Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-Benzyl-2-propynamide

Mei-Mei Chen, ${ }^{\text {a }}$ Yu-Xing Gao, ${ }^{\text {b }}$ Hai-Yan Wang, ${ }^{\text {c }}$ Da-Xiong Han $^{\text {a* }}$ and Yu-Fen Zhao ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Pharmacy, Medical College of Xiamen University, Xiamen 361005, People's Republic of China, ${ }^{\mathbf{b}}$ Department of Chemistry and the Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China, and ${ }^{\text {c }}$ The Third Institute of Oceanography, State Oceanic Administration of China, Xiamen 361005, People's Republic of China
Correspondence e-mail: daxiong@xmu.edu.cn

Received 8 March 2009; accepted 19 April 2009
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.070 ; w R$ factor $=0.221$; data-to-parameter ratio $=13.7$.

Pale-yellow crystals of the title compound, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}$, have been obtained by the reaction of benzylamine and methyl propiolate. Weak intermolecular hydrogen bonding is observed between acetylenic H and carbonyl O atoms. The crystal packing is stabilized by these $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen-bonding interactions.

Related literature

The title compound was synthesized using a similar synthetic method to that described by Williamson et al. (1994). For the synthesis of triazole derivatives, see: Katritzky \& Singh (2002). For the structure of the methyl analogue of the title compound, see: Leiserowitz \& Tuval (1978). For the program ROTAX, used to investigate possible pseudo-merohedral twinning, see: Parsons \& Gould (2003).

Experimental

Crystal data
 $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}$

$$
M_{r}=159.18
$$

Monoclinic, $P 2_{1} / c$
$a=9.495(2) \AA$
$Z=4$
$b=10.703$ (2) \AA
$c=8.9120(19) \AA$
$\beta=101.637(3)^{\circ}$
$V=887.1(3) \mathrm{A}^{3}$

Data collection

Bruker SMART APEX areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.848, T_{\text {max }}=1.000$
$($ expected range $=0.828-0.977)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.070$

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=0.45$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}{ }^{\mathrm{i}}$	0.88	1.99	$2.839(3)$	163
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93 (4)	2.17 (4)	3.105 (4)	176 (3)

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$.
Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the National Science Foundation of China (grant No. 40706043) and the Science Foundation of Xiamen University (grant No. Z03120) for supporting this work. We also thank Mr Z.-B. Wei for technical assistance.

[^0]
References

Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Katritzky, A. R. \& Singh, K. (2002). J. Org. Chem. 67, 9077-9079.
Leiserowitz, L. \& Tuval, M. (1978). Acta Cryst. B34, 1230-1247.
Parsons, S. \& Gould, B. (2003). ROTAX. University of Edinburgh, Scotland. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Williamson, B. L., Tykwinski, R. R. \& Stang, P. J. (1994). J. Am. Chem. Soc. 116, 93-98.

supplementary materials

N-Benzyl-2-propynamide

M.-M. Chen, Y.-X. Gao, H.-Y. Wang, D.-X. Han and Y.-F. Zhao

Comment

The title compound is a terminal alkyne, which is an intermediate in the synthesis of triazole derivatives (Katritzky et al., 2002).

The molecular structure of the title compound is shown in Fig. 1. The bond lengths and bond angles in the compound are comparable to those in the structure of the methyl analogue (Leiserowitz et al., 1978). The atoms C1, C2, C3, O1, N1 and C 4 of the title compound are nearly in a plane, and the r.m.s. deviation of these atoms from their mean plane is $0.007 \AA$. The dihedral angle between the plane of C 5 and the phenyl ring and the mean plane of C 1 to C 4 and N 1 is 76.8 (2) . Hydrogen bonding plays a significant role in stabilizing the crystal structure; see Table 1 for geometric parameters and symmetry operations. The most prominent link occurs between the acylamide O and the N atoms, to form chains along the b axis. Weak intermolecular hydrogen bonding is observed between the alkyne H and the carbonyl O atoms (table 1). Molecules are connected into a double chain by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen-bonding interactions (Figure 2).

Experimental

The title compound was synthesized using a similar synthetic method as for the preparation of 1-(pyrrolidin-1-yl)prop-2-yn-1-one (Williamson et al., 1994). To a solution of benzyl amine ($1.07 \mathrm{~g}, 10 \mathrm{mmol}$) in methanol (4 ml) was slowly added methyl propiolate $(0.84 \mathrm{~g}, 10 \mathrm{mmol})$ at 195 K with stirring. After addition of the propiolate, the stirring was continued for 10 h and then the mixture warmed to 248 K for 5 h . The reaction was quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (12 ml) and extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous MgSO_{4}, concentrated under vacuum and the crude product was purified by column chromatography (petroleum ether: ethyl acetate, 2:1) to give the title compound as a pale yellow solid in 72% yield. Single crystals of the title compound were grown in a petroleum ether/ethyl acetate solution $(v / v=5: 1)$ by slow evaporation.

Refinement

All non-hydrogen atoms were refined anisotropically. The acetylenic H atom was located from a difference Fourier map and both the position and isotropic thermal parameter were freely refined. The remaining H atoms were placed in ideal positions and refined via a riding model with $\mathrm{N}-\mathrm{H}$ distances of $0.88, \mathrm{C}-\mathrm{H}_{\text {methyelene }}=0.99$ and $\mathrm{C}-\mathrm{H}_{\text {aromatic }}=0.95 \AA$ and $\mathrm{U}_{\text {iso }}=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$. Torsion angles were refined to fit the electron density. The metric parameters suggest the possibility of pseudo-merohedral twinning by a two fold rotation around either the a or the c axis. Application of the respective twin law of (-1 0-0.43, 010,001), obtained using the program Rotax (Parsons \& Gould, 2003)) however indicated that the crystal at hand was not twinned.

supplementary materials

Figures

Fig. 1. The molecular structure of the compound with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).

Fig. 2. Part of the packing of the title compound. Intermolecular hydrogen bonds are represented by dashed lines.

N-benzyl-2-propynamide

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}$
$M_{r}=159.18$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.495(2) \AA$
$b=10.703$ (2) \AA
$c=8.9120(19) \AA$
$\beta=101.637(3)^{\circ}$
$V=887.1(3) \AA^{3}$
$Z=4$
$F_{000}=336$
$D_{\mathrm{x}}=1.192 \mathrm{Mg} \mathrm{m}^{-3}$
Mo Ka radiation
$\lambda=0.71073 \AA$
Cell parameters from 4373 reflections
$\theta=2.2-28.3^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Chunk, pale yellow
$0.57 \times 0.30 \times 0.30 \mathrm{~mm}$

1550 independent reflections
1510 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\text {min }}=2.9^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}	Secondary atom site location: difference Fourier map Least-squares matrix: full
Hydrogen site location: inferred from neighbouring sites	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.070$	H atoms treated by a mixture of independent and constrained refinement

$w R\left(F^{2}\right)=0.221$
$S=1.26$
1550 reflections
113 parameters

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0874 P)^{2}+1.0844 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.45$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}
Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	$0.8163(2)$	$0.3454(2)$	$0.1877(2)$	$0.0356(6)$
N1	$0.7947(3)$	$0.3179(2)$	$0.4330(3)$	$0.0323(7)$
H1A	0.8203	0.2728	0.5166	0.039^{*}
C1	$1.0048(4)$	$0.0859(3)$	$0.3289(4)$	$0.0401(8)$
C2	$0.9317(3)$	$0.1756(3)$	$0.3242(3)$	$0.0317(7)$
C3	$0.8422(3)$	$0.2867(3)$	$0.3095(3)$	$0.0290(7)$
C4	$0.7008(4)$	$0.4254(3)$	$0.4350(4)$	$0.0365(8)$
H4A	0.7389	0.4971	0.3855	0.044^{*}
H4B	0.7015	0.4487	0.5427	0.044^{*}
C5	$0.5485(3)$	$0.4009(3)$	$0.3545(3)$	$0.0323(7)$
C6	$0.4870(4)$	$0.4688(3)$	$0.2258(4)$	$0.0413(8)$
H6A	0.5418	0.5309	0.1873	0.050^{*}
C7	$0.3471(4)$	$0.4469(4)$	$0.1532(4)$	$0.0483(9)$
H7A	0.3058	0.4943	0.0653	0.058^{*}
C8	$0.2665(4)$	$0.3569(4)$	$0.2069(4)$	$0.0466(9)$
H8A	0.1702	0.3415	0.1559	0.056^{*}
C9	$0.3268(4)$	$0.2895(3)$	$0.3353(4)$	$0.0464(9)$
H9A	0.2715	0.2277	0.3736	0.056^{*}
C10	$0.4673(4)$	$0.3113(3)$	$0.4089(4)$	$0.0411(8)$
H10A	0.5081	0.2643	0.4974	0.049^{*}
H1	$1.061(4)$	$0.014(4)$	$0.328(4)$	$0.050(11)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$
$U^{11} \quad U^{22}$
$U^{33} \quad U^{12} \quad U^{13} \quad U^{23}$

O1	$0.0461(13)$	$0.0335(12)$	$0.0286(12)$	$-0.0005(10)$	$0.0112(9)$	$0.0028(9)$
N1	$0.0378(14)$	$0.0352(14)$	$0.0246(13)$	$0.0058(11)$	$0.0076(10)$	$0.0010(10)$
C1	$0.0344(17)$	$0.0376(19)$	$0.049(2)$	$0.0016(16)$	$0.0091(14)$	$-0.0036(15)$
C2	$0.0313(16)$	$0.0355(17)$	$0.0297(16)$	$-0.0050(13)$	$0.0091(12)$	$-0.0018(12)$
C3	$0.0285(15)$	$0.0301(15)$	$0.0275(15)$	$-0.0076(12)$	$0.0038(11)$	$-0.0021(12)$
C4	$0.0432(18)$	$0.0323(16)$	$0.0342(17)$	$0.0031(14)$	$0.0086(13)$	$-0.0064(13)$
C5	$0.0406(17)$	$0.0284(15)$	$0.0292(15)$	$0.0061(13)$	$0.0104(12)$	$-0.0050(12)$
C6	$0.050(2)$	$0.0380(18)$	$0.0368(18)$	$0.0070(15)$	$0.0116(15)$	$0.0024(14)$
C7	$0.051(2)$	$0.054(2)$	$0.0379(19)$	$0.0174(18)$	$0.0061(16)$	$0.0028(16)$
C8	$0.0387(18)$	$0.053(2)$	$0.046(2)$	$0.0078(16)$	$0.0040(15)$	$-0.0089(16)$
C9	$0.043(2)$	$0.0391(19)$	$0.057(2)$	$-0.0032(15)$	$0.0112(16)$	$-0.0014(16)$
C10	$0.0459(19)$	$0.0358(17)$	$0.0412(18)$	$0.0040(14)$	$0.0080(15)$	$0.0049(14)$

Geometric parameters (\AA, ${ }^{\circ}$)

O1-C3	1.235 (4)
N1-C3	1.314 (4)
N1-C4	1.458 (4)
N1-H1A	0.8800
$\mathrm{C} 1-\mathrm{C} 2$	1.180 (5)
C1-H1	0.93 (4)
C2-C3	1.453 (4)
C4-C5	1.502 (5)
C4-H4A	0.9900
C4-H4B	0.9900
C5-C10	1.378 (5)
C3-N1-C4	121.7 (3)
C3-N1-H1A	119.2
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	119.2
C2- $\mathrm{C} 1-\mathrm{H} 1$	178 (2)
C1-C2-C3	176.9 (3)
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{N} 1$	124.5 (3)
O1-C3-C2	120.3 (3)
N1-C3-C2	115.2 (3)
N1-C4-C5	112.8 (2)
N1-C4-H4A	109.0
C5-C4-H4A	109.0
N1-C4-H4B	109.0
C5-C4-H4B	109.0
H4A-C4-H4B	107.8
C10-C5-C6	119.0 (3)
C10-C5-C4	120.4 (3)
C4-N1-C3-O1	2.1 (5)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	-178.4 (3)
C3-N1-C4-C5	76.0 (4)
N1-C4-C5-C10	63.6 (4)
N1-C4-C5-C6	-117.3 (3)
C10-C5-C6-C7	-0.2 (5)
C4-C5-C6-C7	-179.3 (3)

C5-C6	$1.384(5)$
C6-C7	$1.376(5)$
C6-H6A	0.9500
C7-C8	$1.374(6)$
C7-H7A	0.9500
C8-C9	$1.376(5)$
C8-H8A	0.9500
C9-C10	$1.383(5)$
C9-H9A	0.9500
C10-H10A	0.9500
C6-C5-C4	$120.6(3)$
C7-C6-C5	$120.4(3)$
C7-C6-H6A	119.8
C5-C6-H6A	119.8
C8-C7-C6	$120.6(3)$
C8-C7-H7A	119.7
C6-C7-H7A	119.7
C7-C8-C9	$119.3(3)$
C7-C8-H8A	120.4
C9-C8-H8A	120.4
C8-C9-C10	$120.4(3)$
C8-C9-H9A	119.8
C10-C9-H9A	119.8
C5-C10-C9	$120.4(3)$
C5-C10-H10A	119.8
C9-C10-H10A	119.8
C5-C6-C7-C8	$-0.3(5)$
C6-C7-C8-C9	$0.6(5)$
C7-C8-C9-C10	$-0.5(5)$
C6-C5-C10-C9	$0.3(5)$
C4-C5-C10-C9	$179.4(3)$
C8-C9-C10-C5	$0.0(5)$

sup-4

supplementary materials

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{i}}$	0.88	1.99	$2.839(3)$	163
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.93(4)$	$2.17(4)$	$3.105(4)$	$176(3)$

Symmetry codes: (i) $x,-y+1 / 2, z+1 / 2$; (ii) $-x+2, y-1 / 2,-z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2187).

